Hessian Matrix Calculator

To calculate the hessian matrix, select the number of variables, enter the required values, and hit calculate button using hessian matrix calculator


Give Us Feedback

Hessian Matrix Calculator

Hessian matrix calculator finds the hessian matrix of 2 variables as well as 3 variables. This hessian calculator also evaluates the determinant of the hessian matrix.

What is the hessian matrix?

A hessian matrix is a square matrix that contains the second-order partial derivative of the function. The determinate of the hessian matrix at a given point informs us of the trend of the function.


The formula of the hessian matrix of order 2x2 and 3x3 is given below.

For 3x3

$$H_g=det\begin{pmatrix}f_{xx}&f_{xy}&f_{xz}\\ \:f_{yx}&f_{yy}&f_{yz}\\ \:f_{zx}&f_{zy}&f_{zz}\end{pmatrix}$$

For 2x2

$$H_g=det\begin{pmatrix}f_{xx}&f_{xy}\\ f_{yx}&f_{yy}\end{pmatrix}$$

Examples of Hessian Matrix

Let’s discuss a numerical example in detail.


Find the value of the hessian matrix at different points (0,0,0), (1,0,0), (-1,-1,-1), and (1,1,1) of a function

(2yx4, 2y3, 2xz3).


Step 1: We have a function that is 3 dimensional.

f(x,y,z) = 2yx+ 2y3 + 2xz3

Step 2: General formula 

$$H_g=det\begin{pmatrix}f_{xx}&f_{xy}&f_{xz}\\ f_{yx}&f_{yy}&f_{yz}\\ f_{zx}&f_{zy}&f_{zz}\end{pmatrix}$$

$$=f_{xx}\left(f_{yy\cdot f_{zz}-f^2_{yz}}\right)-f_{xy}\left(f_{xy}\cdot f_{zz}-f_{yz}\cdot f_{xz}\right)+f_{xz}\left(f\left(xy\right)\cdot f_{yz}-f_{yy}\cdot f_{xz}\right)$$

Step 3: Find the partial derivatives

fxx = 24x2y
fxy = 8x3
fxz = 6z2
fxy = 8 x^3
fyy = 12y
fyz = 0
fxz = 6z2
fyz = 0
fzz =12xz

Step 4: Put the values in the formula and obtain the Hessian matrix.

$$H_g=\begin{pmatrix}2x^2y&8x^3&6z^2\\ \:8x^3&12y&0\\ \:6z^2&0&12xz\end{pmatrix}$$

Step 5: Now Find the determinate

= 192x5y – 48x3z2

Step 6: To check the value at the given point, we have

Dg (0,0,0) = 0

Dg(1,0,0) = 0

Dg(1,1,1) = 144

Dg(-1,-1,-1) = 240

Allmath loader
AdBlocker Detected!

To calculate result you have to disable your ad blocker first.